A Test Suite for Inference Involving Adjectives

نویسندگان

  • Marilisa Amoia
  • Claire Gardent
چکیده

Recently, most of the research in NLP has concentrated on the creation of applications coping with textual entailment. However, there still exist very few resources for the evaluation of such applications. We argue that the reason for this resides not only in the novelty of the research field but also and mainly in the difficulty of defining the linguistic phenomena which are responsible for inference. As the TSNLP project has shown test suites provide optimal diagnostic and evaluation tools for NLP applications, as contrary to text corpora they provide a deep insight in the linguistic phenomena allowing control over the data. Thus in this paper, we present a test suite specifically developed for studying inference problems shown by English adjectives. The construction of the test suite is based on the deep linguistic analysis and following classification of entailment patterns of adjectives and follows the TSNLP guidelines on linguistic databases providing a clear coverage, systematic annotation of inference tasks, large reusability and simple maintenance. With the design of this test suite we aim at creating a resource supporting the evaluation of computational systems handling natural language inference and in particular at providing a benchmark against which to evaluate and compare existing semantic analysers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linguistic-based computational treatment of textual entailment recognition

In this thesis, I investigate how lexical resources based on the organisation of lexical knowledge in classes which share common (syntactic, semantic, etc.) features support natural language processing and in particular symbolic recognition of textual entailment. First, I present a robust and wide coverage approach to lexico-structural verb paraphrase recognition based on Levin’s (1993) classif...

متن کامل

On the Translation Quality of Google Translate: With a Concentration on Adjectives

Translation, whose first traces date back at least to 3000 BC (Newmark, 1988), has always been considered time-consuming and labor-consuming. In view of this, experts have made numerous efforts to develop some mechanical systems which can reduce part of this time and labor. The advancement of computers in the second half of the twentieth century paved the ground for the invention of machine tra...

متن کامل

Natural Logic for Textual Inference

This paper presents the first use of a computational model of natural logic—a system of logical inference which operates over natural language—for textual inference. Most current approaches to the PASCAL RTE textual inference task achieve robustness by sacrificing semantic precision; while broadly effective, they are easily confounded by ubiquitous inferences involving monotonicity. At the othe...

متن کامل

Extending the Semantics in Natural Language Understanding

Natural Language understanding over a set of sentences or a document is a challenging problem. We approach this problem using semantic extraction and building an ontology for answering questions based on the data. There is more information in a sentence than found by extracting out the visible terms and their obvious relations between one another. Keeping track of inferences, quantities, inheri...

متن کامل

Inference Patterns with Intensional Adjectives

In this paper we report on an ongoing multiinstitution effort to encode inferential patterns associated with adjective modification in English. We focus here on a subset of intensional adjectives typically referred to as “non-subsective” predicates. This class includes adjectives such as alleged, supposed, so-called, and related modally subordinating predicates. We discuss the initial results o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008